Cart (Loading....) | Create Account
Close category search window

Closed-form discrete fractional and affine Fourier transforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Soo-Chang Pei ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Jian-Jiun Ding

The discrete fractional Fourier transform (DFRFT) is the generalization of discrete Fourier transform. Many types of DFRFT have been derived and are useful for signal processing applications. We introduce a new type of DFRFT, which are unitary, reversible, and flexible; in addition, the closed-form analytic expression can be obtained. It works in performance similar to the continuous fractional Fourier transform (FRFT) and can be efficiently calculated by the FFT. Since the continuous FRFT can be generalized into the continuous affine Fourier transform (AFT) (the so-called canonical transform), we also extend the DFRFT into the discrete affine Fourier transform (DAFT). We derive two types of the DFRFT and DAFT. Type 1 is similar to the continuous FRFT and AFT and can be used for computing the continuous FRFT and AFT. Type 2 is the improved form of type 1 and can be used for other applications of digital signal processing. Meanwhile, many important properties continuous FRFT and AFT are kept in the closed-form DFRFT and DAFT, and some applications, such as filter design and pattern recognition, are also discussed. The closed-form DFRFT we introduce has the lowest complexity among all current DFRFTs that is still similar to the continuous FRFT

Published in:

Signal Processing, IEEE Transactions on  (Volume:48 ,  Issue: 5 )

Date of Publication:

May 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.