By Topic

Adaptive distributed parameter systems identification with enforceable identifiability conditions and reduced-order spatial differentiation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Y. Orlov ; CICESE, Electron. & Telecommun. Dept., San Diego, CA, USA ; J. Bentsman

Presents the synthesis of adaptive identifiers for distributed parameter systems (DPS) with spatially varying parameters described by partial differential equations (PDEs) of parabolic, elliptic, and hyperbolic type. The features of the PDE setting are utilized to obtain the not directly intuitive parameter estimation algorithms that use spatial derivatives of the output data with the order reduced from that of the highest spatial plant derivative. The tunable identifier parameters are passed through the integrator block, which forms their orthogonal expansions. The latter are shown to be pointwise plant parameter estimates. In this regard, the approach of the paper is in the spirit of finite-dimensional observer realization in integrating rather than differentiating the output data, only applied to the spatial rather than temporal domain. The constructively enforceable identifiability conditions, formulated in terms of the sufficiently rich input signals referred to as generators of persistent excitation, are shown to guarantee the existence of a unique zero steady state for the parameter errors. Under such inputs, the tunable parameters in the adaptive identifiers proposed are shown to converge to plant parameters in L2 and the orthogonal expansions of these tunable parameters-pointwise

Published in:

IEEE Transactions on Automatic Control  (Volume:45 ,  Issue: 2 )