Cart (Loading....) | Create Account
Close category search window
 

A method for reduced-order modeling and simulation of large interconnect circuits and its application to PEEC models with retardation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cullum, J. ; Los Alamos Nat. Lab., NM, USA ; Ruehli, A. ; Zhang, T.

The continuous improvement in the performance and the increases in the sizes of VLSI systems make electrical interconnect and package (EIP) design and modeling increasingly more important. Special software tools must be used for the design of high-performance VLSI systems. Furthermore, larger and faster systems require larger and more accurate circuit models. The partial element equivalent circuit (PEEC) technique is used for modeling such systems with three-dimensional full wave models. In this paper, we present a practical, readily parallelizable procedure for generating reduced-order frequency-domain models from general full wave PEEC systems. We use multiple expansion points, and piecemeal construction of pole-residue approximations to transfer functions of the PEEC systems, as was used in the complex frequency hopping algorithms. We consider general, multiple-input/multiple-output PEEC systems. Our block procedure consists of an outer loop of local approximations to the PEEC system, coupled with an inner loop where an iterative model-reduction method is applied to the local approximations. We systematically divide the complex frequency region of interest into small regions and construct local approximations to the PEEC system in each subregion. The local approximations are constructed so that the matrix factorizations associated with each of them are the size of the original system and independent of the order of the approximation. Results of computations on these local systems are combined to obtain a reduced-order model for the original PEEC system. We demonstrate the usefulness of our approach with three interesting examples

Published in:

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on  (Volume:47 ,  Issue: 4 )

Date of Publication:

Apr 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.