By Topic

Scheduling solutions for supporting dependable real-time applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sandrini, F. ; PDCC, Consorzio Pisa Ricerche, Italy ; Di Giandomenico, F. ; Bondavalli, A. ; Nett, E.

This paper deals with tolerance to timing faults in time-constrained systems. TAFT (Time Aware Fault-Tolerant) is a recently devised approach which applies tolerance to timing violations. According to TAFT, a task is structured in a pair, to guarantee that deadlines are met (although possibly offering a degraded service) without requiring the knowledge of task attributes difficult to estimate in practice. Wide margin of actions is left by the TAFT approach in scheduling the task pairs, leading to disparate performances; up to now, poor attention has been devoted to analyse this aspect. The goal of this work is to investigate on the most appropriate scheduling policies to adopt in a system structured in the TAFT fashion, in accordance with system conditions and application requirements. To this end, all experimental evaluation will be conducted based on a variety of scheduling policies, to derive useful indications for the system designer about the most rewarding policies to apply

Published in:

Object-Oriented Real-Time Distributed Computing, 2000. (ISORC 2000) Proceedings. Third IEEE International Symposium on

Date of Conference: