Cart (Loading....) | Create Account
Close category search window
 

Random sampling and data processing for PD-pulse height and shape analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Montanari, G.C. ; Bologna Univ., Italy ; Contin, A. ; Cavallini, A.

A measuring system for the digital acquisition of partial discharge (PD) pulse signals, based on the last generation of oscilloscopes, has been developed in order to perform both PD pulse shape and PD pulse height analysis. Wide-band, fast sampling rate and individually-triggerable memory blocks are available for the acquisition of PD pulse signals. However, a problem of sampling the population of PD pulses arises from the limited available on-line storage memory. Four sampling techniques are investigated and evaluated in order to record an amount of PD pulses which enables PD stochastic inference for a minimum of the on-line memory use. Some statistical indexes based on the pulse-height and pulse-phase distributions are used to compare performances of the different techniques. It is shown that a technique based on the Poisson law provides the most accurate sampling of PD pulses, while minimizing the memory, particularly in the presence of two simultaneously active PD phenomena. The developed procedure enables an accurate analysis of the shape of a large number of PD signals, but also stochastic processing of height distributions, which is becoming a reference for PD pattern analysis

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:7 ,  Issue: 1 )

Date of Publication:

Feb 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.