By Topic

The density advantage of configurable computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
DeHon, A. ; California Inst. of Technol., Pasadena, CA, USA

More and more, field-programmable gate arrays (FPGAs) are accelerating computing applications. The absolute performance achieved by these configurable machines has been impressive-often one to two orders of magnitude greater than processor-based alternatives. Configurable computing is one of the fastest, most economical ways to solve problems such as RSA (Rivest-Shamir-Adelman) decryption, DNA sequence matching, signal processing, emulation, and cryptographic attacks. But questions remain as to why FPGAs have been so much more successful than their microprocessor and DSP counterparts. Do FPGA architectures have inherent advantages? Or are these examples just flukes of technology and market pricing? Will advantages increase, decrease, or remain the same as technology advances? Is there some generalization that accounts for the advantages in these cases? The author attempts to answer these questions and to see how configurable computing fits into the arsenal of structures used to build general, programmable computing platforms

Published in:

Computer  (Volume:33 ,  Issue: 4 )