By Topic

Invariant-based verification of a distributed deadlock detection algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kshemkalyani, A.D. ; Dept. of Comput. & Inf. Sci., Ohio State Univ., Columbus, OH, USA ; Singhal, M.

It is argued that most previous proposals for distributed deadlock detection are incorrect because they have used informal/intuitive arguments to prove the correctness of their algorithms. Informal and intuitive arguments are prone to errors because of the highly complex nature of distributed deadlock detection/resolution algorithms. The priority-based probe algorithm for distributed deadlock detection and resolution of A.L. Choudhary et al. (1989) is corrected, and it is formally proven that the modified algorithm is correct (i.e., that it does detect all deadlocks and does not report phantom deadlocks). The proof technique is novel in that the authors first abstract the properties of the deadlock detection and resolution algorithm by invariants, and then show that the invariants imply the desired correctness of the algorithm

Published in:

Software Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 8 )