By Topic

A time-domain algorithm for the analysis of second-harmonic generation in nonlinear optical structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alsunaidi, M.A. ; Dept. of Electr. Eng., King Fahd Univ. of Pet. & Miner., Dhahran, Saudi Arabia ; Masoudi, H.M. ; Arnold, J.M.

A time-domain simulator of integrated optical structures containing second-order nonlinearities is presented. The simulation algorithm is based on nonlinear wave equations representing the propagating fields and is solved using the finite-difference time-domain method. The simulation results for a continuous-wave operation are compared with beam propagation method simulations showing excellent agreement for the particular examples considered. Because the proposed algorithm does not suffer from the inaccuracies associated with the paraxial approximation, it should find application in a wide range of device structures and in the analysis of short-pulse propagation in second-order nonlinear devices.

Published in:

Photonics Technology Letters, IEEE  (Volume:12 ,  Issue: 4 )