By Topic

Extracting M-of-N rules from trained neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Setiono, R. ; Sch. of Comput., Nat. Univ. of Singapore, Singapore

An effective algorithm for extracting M-of-N rules from trained feedforward neural networks is proposed. First, we train a network where each input of the data can only have one of the two possible values, -1 or one. Next, we apply the hyperbolic tangent function to each connection from the input layer to the hidden layer of the network. By applying this squashing function, the activation values at the hidden units are effectively computed as the hyperbolic tangent (or the sigmoid) of the weighted inputs, where the weights have magnitudes that are equal one. By restricting the inputs and the weights to binary values either -1 or one, the extraction of M-of-N rules from the networks becomes trivial. We demonstrate the effectiveness of the proposed algorithm on several widely tested datasets. For datasets consisting of thousands of patterns with many attributes, the rules extracted by the algorithm are simple and accurate

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 2 )