By Topic

Recursive training of neural networks for classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Aladjem, M. ; Dept. of Electr. & Comput. Eng., Ben-Gurion Univ. of the Negev, Beer-Sheva, Israel

A method for recursive training of neural networks for classification is proposed. It searches for the discriminant functions corresponding to several small local minima of the error function. The novelty of the proposed method lies in the transformation of the data into new training data with a deflated minimum of the error function and iteration to obtain the next solution. A simulation study and a character recognition application indicate that the proposed method has the potential to escape from local minima and to direct the local optimizer to new solutions

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 2 )