Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Bayes-optimality motivated linear and multilayered perceptron-based dimensionality reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lotlikar, R. ; Dept. of Electr. & Comput. Eng., Cincinnati Univ., OH, USA ; Kothari, R.

Dimensionality reduction is the process of mapping high-dimension patterns to a lower dimension subspace. When done prior to classification, estimates obtained in the lower dimension subspace are more reliable. For some classifiers, there is also an improvement in performance due to the removal of the diluting effect of redundant information. A majority of the present approaches to dimensionality reduction are based on scatter matrices or other statistics of the data which do not directly correlate to classification accuracy. The optimality criteria of choice for the purposes of classification is the Bayes error. Usually however, Bayes error is difficult to express analytically. We propose an optimality criteria based on an approximation of the Bayes error and use it to formulate a linear and a nonlinear method of dimensionality reduction. The nonlinear method we propose, relies on using a multilayered perceptron which produces as output the lower dimensional representation. It thus differs from autoassociative like multilayered perceptrons which have been proposed and used for dimensionality reduction. Our results show that the nonlinear method is, as anticipated, superior to the linear method in that it can perform unfolding of a nonlinear manifold. In addition, the nonlinear method we propose provides substantially better lower dimension representation (for classification purposes) than Fisher's linear discriminant (FLD) and two other nonlinear methods of dimensionality reduction that are often used

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 2 )