Cart (Loading....) | Create Account
Close category search window
 

The layer-wise method and the backpropagation hybrid approach to learning a feedforward neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rubanov, N.S. ; Dept. of Radiophys., Byelorussian State Univ., Minsk, Byelorussia

Feedforward neural networks (FNNs) have been proposed to solve complex problems in pattern recognition and classification and function approximation. Despite the general success of learning methods for FNNs, such as the backpropagation (BP) algorithm, second-order optimization algorithms and layer-wise learning algorithms, several drawbacks remain to be overcome. In particular, two major drawbacks are convergence to a local minima and long learning time. We propose an efficient learning method for a FNN that combines the BP strategy and optimization layer by layer. More precisely, we construct the layer-wise optimization method using the Taylor series expansion of nonlinear operators describing a FNN and propose to update weights of each layer by the BP-based Kaczmarz iterative procedure. The experimental results show that the new learning algorithm is stable, it reduces the learning time and demonstrates improvement of generalization results in comparison with other well-known methods

Published in:

Neural Networks, IEEE Transactions on  (Volume:11 ,  Issue: 2 )

Date of Publication:

Mar 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.