By Topic

Efficient full-chip yield analysis methodology for OPC-corrected VLSI designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Axelrad, V. ; SEQUOIA Design Syst., Woodside, CA, USA ; Cobb, N. ; O'Brien, M. ; Boksha, V.
more authors

Degradation of lithographic pattern fidelity is a major cause of yield loss in VLSl manufacturing. A general methodology for full-chip analysis and improvement of yield loss due to lithographic effects is proposed The approach is based on: a) extraction of pattern fidelity statistics using a full-chip layout engine, b) full-chip optical proximity correction (OPC) to improve pattern reproduction, and c) estimation of yield losses due to line variability, using transistor sensitivity to pattern registration obtained from physical transistor modeling. As a result, yield estimates related to either pattern reproduction fidelity or transistor parametric data variations (such as leakage or drive current) are generated. The method is efficient and well suited for application to modern VLSI designs of memory or logic devices

Published in:

Quality Electronic Design, 2000. ISQED 2000. Proceedings. IEEE 2000 First International Symposium on

Date of Conference: