By Topic

High robustness and reliability of fuzzy logic based position estimation for sensorless switched reluctance motor drives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cheok, A.D. ; Dept. of Electr. Eng., Nat. Univ. of Singapore, Singapore ; Ertugrul, N.

In many applications where motor drives are used, concern. Thus, a major consideration is the reliability of position estimation schemes when sensor less SR motor drive control is employed. Hence, in this paper, the robust of a fuzzy logic based angle estimation algorithm for the switched reluctance motor (SR) motor is described. It is shown using theoretical analysis and experimental results, that by using logic, the angle estimation scheme gains a high level of robustness and reliability. A theoretical and quantitative analysis of the noise and error commonly found in practical motor drives is given, and how this can affect SR motor position estimation. An analysis is also given on the concepts of robustness and reliability. It is shown that the fuzzy logic based scheme is robust to erroneous and noisy signals commonly found in motor drives

Published in:

Power Electronics, IEEE Transactions on  (Volume:15 ,  Issue: 2 )