By Topic

A model for the temperature-dependent saturated ID -VD characteristics of an a-Si:H thin-film transistor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
W. -S. Lee ; Sch. of Electr. Eng., Purdue Univ., West Lafayette, IN, USA ; G. W. Neudeck ; J. Choi ; S. Luan

A simplified analytical expression for the temperature dependent saturated ID-VD characteristics of hydrogenated amorphous silicon (a-Si:H) thin-film transistors, between -50°C and 90°C, is presented and experimentally verified. The results show that the experimental transfer and output characteristics at several temperatures are easily modeled by a single equation. The model is based on three functions obtained from the experimental data of ID versus VG, over a range of temperature. Theoretical results confirm the simple form of the model in terms of the device geometry. As the temperature increased, the saturated drain current increased and, at a fixed gate voltage the device saturated at increasingly larger drain voltages while the threshold voltage decreased. Good agreement between the measured data and the model was obtained up to 363 K. Also observed at temperatures larger than 363 K was a decrease in ID and more severe gate voltage hysteresis characteristics

Published in:

IEEE Transactions on Electron Devices  (Volume:38 ,  Issue: 9 )