By Topic

Formal verification of safety properties in timed circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pena, M.A. ; Dept. of Comput. Archit., Tech. Univ. Catalonia, Barcelona, Spain ; Cortadella, J. ; Kondratyev, A. ; Pastor, E.

The incorporation of timing makes circuit verification computationally expensive. This paper proposes a new approach for the verification of timed circuits. Rather than calculating the exact timed stare space, a conservative overestimation that fulfills the property under verification is derived. Timing analysis with absolute delays is efficiently performed at the level of event structures and transformed into a set of relative timing constraints. With this approach, conventional symbolic techniques for reachability analysis can be efficiently combined with timing analysis. Moreover the set of timing constraints used to prove the correctness of the circuit can also be reported for backannotation purposes. Some preliminary results obtained by a naive implementation of the approach show that systems with more than 106 untimed states can be verified

Published in:

Advanced Research in Asynchronous Circuits and Systems, 2000. (ASYNC 2000) Proceedings. Sixth International Symposium on

Date of Conference:

2000