By Topic

Nonstationary time series analysis by temporal clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Policker ; Dept. of Electr. & Comput. Eng., Ben-Gurion Univ. of the Negev, Beer-Sheva, Israel ; A. B. Geva

The object of this paper is to present a model and a set of algorithms for estimating the parameters of a nonstationary time series generated by a continuous change in regime. We apply fuzzy clustering methods to the task of estimating the continuous drift in the time series distribution and interpret the resulting temporal membership matrix as weights in a time varying, mixture probability distribution function (PDF). We analyze the stopping conditions of the algorithm to infer a novel cluster validity criterion for fuzzy clustering algorithms of temporal patterns. The algorithm performance is demonstrated with three different types of signals

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:30 ,  Issue: 2 )