Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Design and stability analysis of single-input fuzzy logic controller

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Byung-Jae Choi ; Dept. of Comput. & Commun., Taega Univ., Kyungpook, South Korea ; Seong-Woo Kwak ; Byung Kook Kim

In existing fuzzy logic controllers (FLCs), input variables are mostly the error and the change-of-error regardless of complexity of controlled plants. Either control input u or the change of control input Δu is commonly used as its output variable. A rule table is then constructed on a two-dimensional (2-D) space. This scheme naturally inherits from conventional proportional-derivative (PD) or proportional-integral (PI) controller. Observing that 1) rule tables of most FLCs have skew-symmetric property and 2) the absolute magnitude of the control input |u| or |Δu| is proportional to the distance from its main diagonal line in the normalized input space, we derive a new variable called the signed distance, which is used as a sole fuzzy input variable in our simple FLC called single-input FLC (SFLC). The SFLC has many advantages: The total number of rules is greatly reduced compared to existing FLCs, and hence, generation and tuning of control rules are much easier. The proposed SFLC is proven to be absolutely stable using Popov criterion. Furthermore, the control performance is nearly the same as that of existing FLCs, which is revealed via computer simulations using two nonlinear plants

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:30 ,  Issue: 2 )