Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Unwarping of unidirectionally distorted EPI images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kybic, J. ; Biomed. Imaging Group, Swiss Fed. Inst. of Technol., Lausanne, Switzerland ; Thevenaz, P. ; Nirkko, A. ; Unser, M.

Echo-planar imaging (EPI) is a fast nuclear magnetic resonance imaging (MRI) method. Unfortunately, local magnetic field inhomogeneities induced mainly by the subject's presence cause significant geometrical distortion, predominantly along the phase-encoding direction, which must be undone to allow for meaningful further processing. So far, this aspect has been too often neglected. In this paper, the authors suggest a new approach using an algorithm specifically developed for the automatic registration of distorted EPI images with corresponding anatomically correct MRI images. They model the deformation field with splines, which gives us a great deal of flexibility, while comprising the affine transform as a special case. The registration criterion is least squares. Interestingly, the complexity of its evaluation does not depend on the resolution of the control grid. The spline model gives the authors good accuracy thanks to its high approximation order. The short support of splines leads to a fast algorithm. A multiresolution approach yields robustness and additional speedup. The algorithm was tested on real as well as synthetic data, and the results were compared with a manual method. A wavelet-based Sobolev-type random deformation generator was developed for testing purposes. A blind test indicates that the proposed automatic method is faster, more reliable, and more precise than the manual one.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:19 ,  Issue: 2 )