By Topic

A real-time learning control approach for nonlinear continuous-time system using recurrent neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
T. W. S. Chow ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, Hong Kong ; Xiao-Dong Li ; Yong Fang

In this paper, a real-time iterative learning control (ILC) approach for a nonlinear continuous-time system using recurrent neural networks (RNNs) with time-varying weights is presented. Two RNNs are utilized in the ILC system. One is used to approximate the nonlinear system and another is used to mimic the desired system response. The ILC rule is obtained by combining the two RNNs to form a neural network control system. Also, a kind of iterative RNNs training algorithm is developed based on the two-dimensional (2-D) system theory. An RNN using the proposed 2-D training algorithm is able to approximate any trajectory to a very high degree of accuracy. Simulation results show that the proposed ILC approach is very efficient. The newly developed 2-D RNNs training algorithms provides a new dimension to the application of RNNs in a nonlinear continuous-time system

Published in:

IEEE Transactions on Industrial Electronics  (Volume:47 ,  Issue: 2 )