By Topic

A stable self-organizing fuzzy controller for robotic motion control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shiuh-Jer Huang ; Dept. of Mech. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan ; Ji-Shin Lee

It is well known that robotic manipulators are highly nonlinear coupling dynamic systems. It is difficult to establish an appropriate mathematical model for the design of a model-based controller. Although fuzzy logic control has a model-free feature, it still needs time-consuming work for the rules bank and fuzzy parameters adjustment. In this paper, a stable self-organizing fuzzy controller (SOFC) is proposed to manipulate the motion trajectory of a 5-degrees-of-freedom robot. This approach has a learning ability for responding to the time-varying characteristic of a robot. Its control rules bank can be established and modified continuously by online learning with zero initial fuzzy rules. In addition, this control strategy has effectively improved the stability problem of a previous SOFC. The experimental results show that this intelligent controller has a stable learning ability and good motion control capability

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:47 ,  Issue: 2 )