Cart (Loading....) | Create Account
Close category search window
 

Magneto-optical current sensor by domain wall motion in orthoferrites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Didosyan, Yuri S. ; Inst. of Metrol. Service of Gosstand. of Russia, Moscow, Russia ; Hauser, Hans ; Nicolics, J. ; Barash, V.Y.
more authors

A brief review of the latest developments on optical current measurements based on the Faraday effect is presented. In all existing magneto-optical current transformers, the main measured parameter is the polarization state of the light transmitted by a sensor element. A new transformer is described by means of new results concerning the domain wall excitation. The measured parameter is the geometrical position of the boundary between domains with opposite magnetizations. In a wide frequency band, including DC currents, the measurement results are a linear function of the measured current. They are not affected by temperature changes and mechanical factors

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:49 ,  Issue: 1 )

Date of Publication:

Feb 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.