By Topic

EMG signal classification using conic section function neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
L. Ozyilmaz ; Dept. of Electron. & Commun. Eng., Yildiz Univ., Istanbul, Turkey ; T. Yildirim ; H. Seker

The aim of this work is to classify EMG signals using a new neural network architecture to control multifunction prostheses. The control of these prostheses can be made using myoelectric signals taken from a single pair of surface electrodes. This case has been demonstrated specifically for use by above elbow amputees. The ability to separate different muscle contraction characters depends on myoelectric signal information. Therefore, the classification of these signals is investigated. The proposed neural network algorithm here makes the user learn better and faster

Published in:

Neural Networks, 1999. IJCNN '99. International Joint Conference on  (Volume:5 )

Date of Conference: