By Topic

CW high power single-lobed far-field operation of long-cavity AlGaAs-GaAs single-quantum-well laser diodes grown by MOCVD

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
P. Gavrilovic ; Polaroid Corpo., Cambridge, MA, USA ; F. N. Timofeev ; T. Haw ; J. E. Williams

Data on long-cavity 100-μm-wide broad-stripe laser diodes that lase with a barrow single-lobed far-field pattern in continuous room-temperature operation are presented. Diodes with a cavity length of 1250 μm emit a power of 200 mW per facet into a 2.5° lobe (full width at half maximum). Short-cavity devices (cavity length of 350 μm) lase with a continuously increasing number of lateral modes right from threshold, and exhibit a far-field divergence that is over three times greater than that of 1250-μm diodes. Explanations for the effect of increasing cavity length on the field patterns of these devices are proposed, based on the measured increase in injected carrier diffusion length in long-cavity diodes and the influence of thermal waveguiding and mirror losses on intermodel discrimination

Published in:

IEEE Journal of Quantum Electronics  (Volume:27 ,  Issue: 7 )