By Topic

Building an accretive authentication system using a RBF network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qiuming Zhu ; Digital Imaging & Comput. Vision Lab., Nebraska Univ., Omaha, NE, USA ; Luzheng Liu

A computerized authentication system should be able to admit new authentic entries continuously while maintain the existing entry records and an uninterrupted system operation. In this paper, we describe a competitive RBF neural network that is able to incrementally construct itself in response to the pattern samples presented to the system. The neural network is thus a suitable choice for authentication system applications. The accretion property of the neural network is made possible by allowing each pattern class (an authentic entry) being modeled in multiple hyper-ellipsoidal distributions, and mapping these distributions to multiple RBF neural units

Published in:

Neural Networks, 1999. IJCNN '99. International Joint Conference on  (Volume:4 )

Date of Conference: