By Topic

A tractable above-threshold model, for the design of DFB and phase-shifted DFB lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Orfanos, I. ; Electron. Lab., Athens Univ., Greece ; Sphicopoulos, T. ; Tsigopoulos, A. ; Caroubalos, C.

A model, based on the transfer matrix method, and extended to above-threshold conditions in order to be used in the analysis and design of distributed feedback (DFB) structures, is presented. It provides the oscillation parameters as lasing frequency and net material gain, the linewidth estimation and output power, the photon density, carrier density, and effective refractive index profiles. This model can be used with or without facet reflectivities and with a number of symmetric or asymmetric phase shifts. It takes into account nonuniform envelope material gain and nonuniform index saturation. It is easily adaptable to any structure modifications

Published in:

Quantum Electronics, IEEE Journal of  (Volume:27 ,  Issue: 4 )