By Topic

Modeling and supervisory control of a disassembly automation workcell based on blocking topology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kok-Meng Lee ; Sch. of Mech. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Bailey-van Kuren, M.M.

This paper describes a model for automated disassembly that accounts for workcell interaction and used product constraints. The model provides an essential means to determine, in real-time, the next component for disassembly using the knowledge of the product design and sensor feedback minimizing the steps to remove goal components. Sets of components for removal were resolved by minimizing setup time for disassembling the component. Given the model, a controller for product disassembly is defined that can account for missing and known replacement components. The controller can recover from unknown replacement components and jammed components when alternate removal sequences exist to meet the cell goal. Two case study examples are presented and experimentally simulated. Simulation results based on real product, vision sensor measure, and process input are presented and discussed. It is expected that the concepts demonstrated through these case studies can provide useful insights into other mechanical assemblies

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:16 ,  Issue: 1 )