By Topic

Replica determinism and flexible scheduling in hard real-time dependable systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Poledna, S. ; Inst. for Tech. Comput. Sci., Tech. Univ. of Vienna, Austria ; Burns, A. ; Wellings, A. ; Barrett, P.

Fault-tolerant real-time systems are typically based on active replication where replicated entities are required to deliver their outputs in an identical order within a given time interval. Distributed scheduling of replicated tasks, however, violates this requirement if on-line scheduling, preemptive scheduling, or scheduling of dissimilar replicated task sets is employed. This problem of inconsistent task outputs has been solved previously by coordinating the decisions of the local schedulers such that replicated tasks are executed in an identical order. Global coordination results either in an extremely high communication effort to agree on each schedule decision or in an overly restrictive execution model where on-line scheduling, arbitrary preemptions, and nonidentically replicated task sets are not allowed. To overcome these restrictions, a new method, called timed messages, is introduced. Timed messages guarantee deterministic operation by presenting consistent message versions to the replicated tasks. This approach is based on simulated common knowledge and a sparse time base. Timed messages are very effective since they neither require communication between the local scheduler nor do they restrict usage of on-line flexible scheduling, preemptions and nonidentically replicated task sets

Published in:

Computers, IEEE Transactions on  (Volume:49 ,  Issue: 2 )