By Topic

An optimal part sending policy for a production system in a general configuration with a new control strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhao Xiaobo ; Sch. of Econ. & Manage., Tsinghua Univ., Beijing, China ; Nakashima, K.

We consider a production system in a general configuration with a new control strategy: the push mechanism for the part transport and the kanban technique for the work-in-process (WIP). The production system is composed of many stations such as an entrance station, a set of work stations, a central station, and an exit station, that are arranged in a general configuration. The push mechanism is followed for transporting a part from a station to a destination station. The kanban technique is adopted for controlling the WIP in a work station. The production system is modeled by a closed queuing network in a general configuration with a Markov part sending mechanism and a machine no blocking (MNB) technique. An optimal part sending policy that maximizes the expected system throughput is formulated into a long run average semi-Markov decision process. Three solution approaches are developed for obtaining optimal or suboptimal solutions. Numerical examples are given to evaluate the quality of the solutions obtained by the solution approaches

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:30 ,  Issue: 2 )