By Topic

Two time-derivative Lorentz material (2TDLM) formulation of a Maxwellian absorbing layer matched to a lossy medium

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wittwer, D.C. ; Dept. of Electr. & Comput. Eng., Arizona Univ., Tucson, AZ, USA ; Ziolkowski, R.W.

A two time-derivative Lorentz material (2TDLM) is introduced to define polarization and magnetization fields that lead to an absorbing layer that can be matched to a lossy dielectric medium. The 2TDLM is a generalization of the successful uniaxial polarization and magnetization time-derivative Lorentz material (TDLM) which has been introduced as an absorbing boundary condition for simulation regions dealing with lossless materials. Expressions are derived to describe the propagation of an arbitrary plane wave in this 2TDLM Maxwellian absorbing material. They are used to study the scattering from a semi-infinite 2TDLM half-space of an arbitrary plane wave incident upon it from a lossy isotropic dielectric medium. Matching conditions are derived which produce reflectionless transmission through such an interface for any angle of incidence and frequency. Numerical tests are given which demonstrate the effectiveness of the resulting 2TDLM absorbing layer

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:48 ,  Issue: 2 )