By Topic

Combined effects of sub-cooling and operating pressure on the performance of a two-chamber thermosyphon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
C. Ramaswamy ; Dept. of Mech. Eng., Maryland Univ., College Park, MD, USA ; Y. K. Joshi ; W. Nakayama ; W. B. Johnson

The heat dissipation rates at the chip level are projected to reach the 50-100 W/cm2 mark for some future high performance electronic systems. Liquid cooling with phase change has been demonstrated to be a very efficient technique for thermal management of such high heat dissipation rates. Past work on liquid immersion cooling using fluorocarbons has shown the advantage of using enhanced structures to reduce boiling incipience excursion and raise the critical heat flux (CHF). Thermosyphons, employing these enhanced structures are an alternative to liquid immersion and are suitable for point cooling applications, where very compact evaporators are needed. This study investigates the combined effect of sub-cooling and pressure on the performance of an enhanced microstructure based thermosyphon, which has shown very high heat transfer rates (up to 100 W/cm2 with a wall superheat of 27.8°C). The pressure levels tested were partial vacuum (40-101.3 kPa), atmospheric pressure (101.3 kPa) and high pressure (101.3-370 kPa). The experiments were initiated at room temperature, and hence the sub-cooling corresponded to the difference in the liquid saturation temperature at the starting system pressure and room temperature. The results show a reduction in wall superheat values at higher pressures, at a given heat flux. The performance of the system was evaluated by defining a surface-to-ambient resistance. Results show that a partial vacuum at all heat fluxes results in better performance compared to higher pressures. The combined effect of pressure and sub-cooling was also tested for a compact evaporator and the results obtained were similar to the baseline case (larger evaporator)

Published in:

IEEE Transactions on Components and Packaging Technologies  (Volume:23 ,  Issue: 1 )