By Topic

Steady state thermal characterization and junction temperature estimation of multichip module packages using the response surface method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
B. A. Zahn ; ChipPAC Inc., Chandler, AZ, USA

The steady state thermal performance of semiconductor packages has been traditionally reported through the utilization of a single junction-to-ambient thermal resistance constant commonly referred to as θja. This is particularly inadequate for multichip modules where several devices reside within the same package structure. This paper discusses how a central composite design of experiments can be applied to provide a more accurate thermal characterization of a multichip module package. The end product is a series of linear or polynomial equations which can be utilized by the customer to calculate individual device junction temperatures over a wide variation of convection cooling environments and multiple device power dissipations. A 352 plastic ball grid array package, which encompasses three individual integrated circuit devices, is used as an example. The paper steps through the sensitivity analysis and evaluates the accuracy of the resulting equations. This method of thermal characterization can be easily applied to single chip modules of varying power and cooling regimes, or multiple output devices where several power junctions reside within the same integrated circuit

Published in:

IEEE Transactions on Components and Packaging Technologies  (Volume:23 ,  Issue: 1 )