By Topic

A fuzzy system for automotive fault diagnosis: fast rule generation and self-tuning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yi Lu ; Dept. of Electr. & Comput. Eng., Michigan Univ., Dearborn, MI, USA ; Tie Qi Chen ; Hamilton, B.

This paper describes a fuzzy model that learns automotive diagnostic knowledge through machine learning techniques. The fuzzy model contains the algorithms for automatically generating fuzzy rules and optimizing fuzzy membership functions. The fuzzy model has been implemented to detect a vacuum leak in the electronic engine controller (EEC) as part of the end-of-line test at automotive assembly plants. The implemented system has been tested extensively, and its performance is presented

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:49 ,  Issue: 2 )