By Topic

Detection of nonlinearity in a time-series: by the synthesis of surrogate data using a Kolmogorov-Smirnoff tested, hidden Markov model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
C. P. Unsworth ; Dept. of Electr. Eng., Edinburgh Univ., UK ; M. Cowper ; S. McLaughlin ; B. Mulgrew

Conventional methods of hypothesis testing for nonlinearity in a time-series employ the method of surrogate data which makes use of the Fourier transform (FT). As various authors have shown, this can lead to artifacts in the surrogates and spurious detection of nonlinearity can result. This paper documents a new method to synthesize surrogate data using a 1st order hidden Markov model (HMM) combined with a Kolmogorov-Smirnoff test (KS-test), to determine the required resolution of the HMM. The method provides a way to retain the dynamics of a time-series and impart the null hypothesis (H/sub 0/) onto the synthesized surrogate which avoids the FT and its associated artifact. Significance test results for a sinewave, Henon map and Gaussian noise time-series are presented. It is demonstrated through 'significance testing' that KS-tested, HMM surrogates can be successfully used to distinguish between a deterministic and stochastic time-series. Then by applying a simple test for linearity, using linear and nonlinear predictors, it is possible to determine the nature of the deterministic class and hence, conclude whether the system is linear deterministic or nonlinear deterministic. Furthermore, it is demonstrated that the method works for periodic functions too, where FT surrogates break down.

Published in:

Signals, Systems, and Computers, 1999. Conference Record of the Thirty-Third Asilomar Conference on  (Volume:1 )

Date of Conference:

24-27 Oct. 1999