By Topic

Design optimization of high-performance low-temperature 0.18 μm MOSFETs with low-impurity-density channels at supply voltage below 1 V

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun Xu ; Adv. Mater. Res. Inst., New Orleans Univ., LA, USA ; Cheng, M.-C.

A 0.18 μm nMOS structure with a vertically nonuniform low-impurity-density channel (LIDC) at 77 K has been studied at supply voltage below 1 volt. An abrupt Gaussian profile is used in the channel. The investigation is based on two-dimensional (2-D) energy transport simulation with appropriate models to account for quantum and low-temperature freeze-out effects. The study focuses on achieving high driving capability and low off-current at low supply voltage and on minimizing short-channel effects. Some guidelines are proposed for improving device performance and suppressing short-channel effects of the LIDC MOS devices. It is shown that at 77 K the optimized nonuniform LIDC 0.18 μm nMOS structure with an abrupt impurity channel profile at supply voltage as low as 0.9 V is able to provide a saturation drain current comparable to that of a room-temperature LIDC 0.1 μm nMOS device at 1.5 V. Furthermore, the 77 K LIDC 0.18 μm nMOS consumes considerably lower dynamic and standby power than the room-temperature 0.1 μm nMOS. These results suggest that the LIDC MOS structure with an abrupt channel profile is very suitable for low-power and high-speed ULSI applications at low temperature

Published in:

Electron Devices, IEEE Transactions on  (Volume:47 ,  Issue: 4 )