By Topic

A study of autonomous mobile system in outdoor environment. III. Local path planning for a nonholonomic mobile robot by chained form

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Takiguchi ; Mitsubishi Electr. Corp., Kamakura, Japan ; J. Hallam

This paper presents the path planning/control method of a car-like mobile robot. The proposed two-stage path planner consists of the global path planner and the local path planner. The global path planner finds collision-free paths from an environmental map, which features universal consideration of the topological configuration of all obstacles by the method of Maklink Graph. The local path planner/controller linearises the robot dynamics by using the chained form and accomplishes a closed-loop control. This satisfies the nonholonomic constraints and obtains robustness toward model errors, drift and disturbances. Obstacle avoidance experiments show that the proposed method can successfully plan a collision-free path in a cluttered environment and navigate the robot to the goal with high trajectory accuracy

Published in:

Vehicle Electronics Conference, 1999. (IVEC '99) Proceedings of the IEEE International

Date of Conference:

1999