By Topic

Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bin Yao ; Sch. of Mech. Eng., Purdue Univ., West Lafayette, IN, USA ; Fanping Bu ; J. Reedy ; G. T. -C. Chiu

High-performance robust motion control of single-rod hydraulic actuators with constant unknown inertia load is considered. The two chambers of a single-rod actuator have different areas, so the dynamic equations describing the pressure changes in them cannot be combined into a single load pressure equation. This complicates controller design since it not only increases the system dimension but also brings in the stability issue of the added internal dynamics. A discontinuous projection-based adaptive robust controller (ARC) is constructed. The controller takes into account not only the effect of parameter variations coming from the inertia load and various hydraulic parameters but also the effect of hard-to-model nonlinearities such as uncompensated friction forces and external disturbances. It guarantees a prescribed output tracking transient performance and final tracking accuracy in general while achieving asymptotic output tracking in the presence of parametric uncertainties. In addition, the zero error dynamics for tracking any nonzero constant velocity trajectory is shown to be globally uniformly stable. Experimental results are obtained for the swing motion control of a hydraulic arm and verify the high-performance nature of the proposed strategy. In comparison to a state-of-the-art industrial motion controller, the proposed algorithm achieves more than a magnitude reduction of tracking errors. Furthermore, during the constant velocity portion of the motion, it reduces the tracking errors almost down to the measurement resolution level

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:5 ,  Issue: 1 )