By Topic

A novel approach to increasing the reliability of accelerator magnets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bellomo, P. ; Linear Accel. Center, Stanford Univ., CA, USA ; Rago, C.E. ; Spencer, C.M. ; Wilson, Z.J.

When a very large particle accelerator with about 8000 electromagnets, such as the proposed Next Linear Collider (NLC), has an 85% overall availability goal, then all these magnets and their power supplies must be highly reliable and/or quickly repairable. An interdisciplinary reliability engineering approach, more commonly applied to aircraft and space vehicles, has been taken to design maximum reliability in the NLC main linac quadrupoles, while maintaining magnetic field performance and reducing cost. A specially assembled team of engineers with a variety of experiences with magnets carried out a failure mode and effects analysis (FMEA) on a standard SLAC quadrupole magnet system. This process helped them identify which components were less reliable. Then they redesigned the quadrupole to avoid all the potential problems. A prototype magnet will be made and tested to ensure that functionality has not been lost.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:10 ,  Issue: 1 )