By Topic

Quenching behaviour of quadrupole model magnets for the LHC inner triplets at Fermilab

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

32 Author(s)
Andreev, N. ; Fermi Nat. Accel. Lab., Batavia, IL, USA ; Arkan, T. ; Bauer, P. ; Bossert, R.
more authors

The US-LHC Accelerator Project is responsible for the design and production of inner triplet high gradient quadrupoles for installation in the LHC Interaction Region. The quadrupoles are required to deliver a nominal field gradient of 215 T/m in a 70 mm bore, and operate in superfluid helium. As part of the magnet development program, a series of 2 m model magnets have been built and tested at Fermilab, with each magnet being tested over several thermal cycles. This paper summarizes the quench performance and analysis of the model magnets tested, including quench training, and the ramp rate and temperature of the magnet quench current.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:10 ,  Issue: 1 )