By Topic

Nonlinear system identification and overparameterization effects in multisensory evoked potential studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. A. Corrales ; Dept. of Electr. Eng., Univ. Autonoma Metropolitana, Mexico City, Mexico ; J. I. Aunon

Traditional signal processing techniques have not been suitable in establishing contributions from different sensory paths in multisensory evoked potentials. In this paper, a nonlinear modeling technique is proposed to demonstrate the possible mechanisms of interaction between sensory paths. The nonlinear autoregressive with exogenous inputs (NARX) model is explored to establish a relationship between electrical activities of the brain obtained by unimodal and by bimodal stimulation. The intersensory phenomenon concept is extended using nonlinear system theory and applied to show the possible interactions between the visual and auditory sensory paths. In addition, the paper addresses the compensation phenomenon caused by overparameterization in the NARX algorithm when it is applied to event-related potentials. It is hoped that the nonlinear modeling approach will generate hypotheses about the intersensory interaction phenomenon, improving and advancing its theoretical formulation.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:47 ,  Issue: 4 )