Cart (Loading....) | Create Account
Close category search window

Integrated electroplated micromachined magnetic devices using low temperature fabrication processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jae Yeong Park ; Devices & Mater. Lab., LG Corp. Inst. of Technol., Seoul, South Korea ; Allen, M.G.

Micromachining techniques are used to realize inductors and transformers integrated with a multichip package, allowing compact integration with chips, sensors, and other components. The processing steps chosen are all low-temperature, which allows the use of low cost substrates such as MCM-L compatible materials. A variety of micromachined inductors and transformers with different geometries and magnetic core materials are designed, fabricated, tested, and compared. Integrated permalloy and orthonol core inductors (15 μm thick) with nominally identical geometries of 4 mm×1.0 mm×0.13 mm and 30 turns of multilevel copper coils (40 μm thick) show differences in performance due to differences in core behavior. The permalloy core inductor has a slightly higher inductance, but it has much lower dc saturation current than the orthonol core inductor. The effect of insertion of a core air gap was also studied, Although inductors with no air gap having dimensions of 4 mm×4 mm×0.145 mm and 156 turns of multilevel electroplated copper coils (40 μm thick) and electroplated permalloy magnetic core (35 μm thick) have slightly higher inductance (about 1.5 μH), air gap inductors have much higher saturation current (180=250 mA). These devices have high current capability (up to 3 A steady dc current) and are suitable for low power converter applications

Published in:

Electronics Packaging Manufacturing, IEEE Transactions on  (Volume:23 ,  Issue: 1 )

Date of Publication:

Jan 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.