By Topic

System design and optimization of optically amplified WDM-TDM hybrid polarization-insensitive fiber-optic Michelson interferometric sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wuu-Wen Lin ; Chung Shan Inst. of Sci. & Technol., Lung-Tan, Taiwan ; Shih-Chu Huang ; Jiunn-Song Tsay ; Shorn-Chien Hung

We investigate the optically amplified time-division-multiplexed (TDM) polarization-insensitive fiber-optic Michelson interferometric sensor (PIFOMIS) system using erbium-doped fiber amplifier (EDFA). The EDFA was named preamplifier, in-line amplifier or postamplifier; by the position it was located. We find that the preamplifier EDFA has limited usefulness because of its unstable amplification of the optical pulse trains. Both post- and in-line cases can work successfully in the TDM-PIFOMIS system. The amplitudes of the optical pulse trains are stable after amplified by the in-line EDFA, this is a significantly advantage of the optically amplified TDM-PIFOMIS system. The MPDS of the unamplified TDM-PIPOMIS system with an extinction ratio (ER) of 33 dB of the output pulse of the optical guide wave (OGW) modulator was 2.4/spl times/10/sup -5/ rad/(Hz)/sup 1/2/ at 1 kHz. For maintaining MPDS better than 3.4/spl times/10/sup -5/ rad/(Hz)/sup 1/2/ at 1 kHz, the allowable worst ER for the post- and in-line amplified system are 20 and 17.8 dB, respectively, and the corresponding input signal peak power should be larger than -20 and -25 dBm. While employing such two post- and two in-line EDFAs in the TDM-PIFOMIS system, the allowable loss of the sensor array is 47 dB. We analyze the phase-induced intensity noise (PIIN) of the optically amplified TDM-PIFOMIS system in detail and propose methods to reduce the PIIN. The output optical pulse of an intensity modulator with high ER is a key issue to minimize the PIIN and sensor crosstalk in the system. In order to reduce the system PIIN, complexity and cost, we suggest an optimum optically amplified WDM (wavelength-division multiplexing)-TDM hybrid PIFOMIS system with four wavelengths and four eight-sensor subarrays.

Published in:

Lightwave Technology, Journal of  (Volume:18 ,  Issue: 3 )