By Topic

Sub-systems for optical frequency measurements: application to the 282-nm /sup 199/Hg/sup +/ transition and the 657-nm Ca line

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)

We are developing laser frequency measurement technologies that should allow us to construct an optical frequency synthesis system capable of measuring optical frequencies with a precision limited by the atomic frequency standards. The system will be used to interconnect and compare new advanced optical-frequency references (such as Ca, Hg/sup +/, and others) and eventually to connect these references to the Cs primary frequency standard. The approach we are taking is to subdivide optical frequency intervals into smaller and smaller pieces until we are able to use standard electronic-frequency-measurement technology to measure the smallest interval.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:47 ,  Issue: 2 )