By Topic

Noninvasive feature-based detection of delayed gastric emptying in humans using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chen, J.D.Z. ; GI Div., Texas Univ., Galveston, TX, USA ; Zhiyue Lin ; McCallum, Richard W

Radioscintigraphy is currently the gold standard for gastric emptying test which involves radiation exposure and is considerably expensive. The authors present a feature-based detection approach using neural networks for the noninvasive diagnosis of delayed gastric emptying from the cutaneous electrogastrogram (EGG). Simultaneous recordings of the EGG and scintigraphic gastric emptying test were made in 152 patients with symptoms suggestive of delayed gastric emptying. Spectral analyses were performed to derive EGG parameters which were used as the input of the neural network. The result of scintigraphic gastric emptying was used as the gold standard for the training and testing of the neural network. A correct classification of 85% (a specificity of 89% and a sensitivity of 82%) was achieved using the proposed method.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:47 ,  Issue: 3 )