By Topic

Effect of length on the fundamental resonance frequency of arterial models having radial dilatation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yuh Ying Lin Wang ; Dept. of Phys., Nat. Taiwan Normal Univ., Taipei, Taiwan ; Lia, W.C. ; Hsin Hsiu ; Ming-Yie Jan
more authors

The pressure wave moving along an elastic artery filled with blood was examined as a moving Windkessel having a natural oscillation angular frequency ν 0 and a damping coefficient b. The radial directional motion for an element of the wall segment and the adherent fluid was considered. This equation was solved with conditions at both ends of an artery of length L. An external impulse force was applied at one end and a static pressure P 0 at the other. Analytic solution allowed only certain oscillation modes of resonance frequencies f n, where f n 2=a+c nL -2 with a=ν 0 2/4π 2-b 2/16π 2, c n=(n+1/2) 2V 2/4, n=0, 1, 2, 3, ..., and V is the high frequency phase velocity. The relationship between f 0 and L was examined experimentally for tubes constructed of latex, rubber, or dissected aorta. The effect of raising the static pressure P 0 or increasing the tension in the tube was consistent with the prediction. The hypertension that accompanies an augmentation in arterial wall and the association between the heart rate and the mean blood pressure were discussed.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:47 ,  Issue: 3 )