By Topic

A neural-fuzzy system for congestion control in ATM networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shie-Jue Lee ; Dept. of Electr. Eng., Nat. Sun Yat-Sen Univ., Kaohsiung, Taiwan ; Chun-Liang Hou

We propose the use of a neural-fuzzy scheme for rate-based feedback congestion control in asynchronous transfer mode (ATM) networks. Available bit rate (ABR) traffic is not guaranteed quality of service (QoS) in the setup connection, and it can dynamically share the available bandwidth. Therefore, congestion can be controlled by regulating the source rate, to a certain degree, according to the current traffic flow. Traditional methods perform congestion control by monitoring the queue length. The source rate is decreased by a fixed rate when the queue length is greater than a prespecified threshold. However, it is difficult to get a suitable rate according to the degree of traffic congestion. We employ a neural-fuzzy mechanism to control the source rate. Through learning, membership values can be generated and cell loss can be predicted from the status of the queue length. Then, an explicit rate is calculated and the source rate is controlled appropriately. Simulation results have shown that our method is effective compared with traditional methods

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:30 ,  Issue: 1 )