By Topic

Monolithically integrated multiwavelength sampled grating DBR lasers for dense WDM applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
San-Liang Lee ; Dept. of Electron. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan ; Ing-Fa Jang ; Wang, Chi‐Yu ; Ching-Tang Pien
more authors

For accurate control of the channel spacing in fabricating multiwavelength laser arrays or discrete multicolor lasers, we proposed a novel approach that exploits sampled grating distributed Bragg reflector (DBR) mirrors to vary the laser wave length across the wafer. This approach can realize a set of lasers with a wavelength spacing that meets the ITU recommendations for dense wavelength-division multiplexing systems and a wavelength range that can cover up to 40 nm or more. The wavelength variation across an array is achieved by changing the sampling periods of the DBR mirrors from laser to laser. The accuracy on the channel spacing of sampled grating DBR laser arrays was shown to be the same as that of conventional distributed feedback or DBR laser arrays, but their wavelengths can be better controlled for the gratings are fabricated with single holographic exposure. Arrays of 21 lasers have been successfully fabricated and have around 0.8-nm wavelength spacing with a simple tuning mechanism.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:6 ,  Issue: 1 )