By Topic

Fast full-wave analysis of multistrip transmission lines based on MPIE and complex image theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bernal, J. ; Dept. of Appl. Phys., Seville Univ., Spain ; Medina, F. ; Boix, R.R. ; Horno, M.

The mixed-potential electric-field integral equation is used in conjunction with the Galerkin's method and complex image theory for analyzing a transmission line with multiple strips embedded in different layers of a multilayered uniaxially anisotropic dielectric substrate. The two-dimensional Green's functions for the scalar and vector potentials are analytically obtained in the space domain due to the approximation of its spectral-domain version with complex images, thus avoiding lengthy numerical evaluations. Double integrals involved in the computation of Galerkin's matrix entries are quasi-analytically carried out for the chosen basis functions, which are well suited to the problem

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:48 ,  Issue: 3 )