By Topic

Genetic-based TCSC damping controller design for power system stability enhancement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
M. A. Abido ; Dept. of Electr. Eng., King Fahd Univ. of Pet. & Miner., Dhahran, Saudi Arabia

A genetic-based damping controller for a thyristor-controlled series capacitor (GCSC) is presented in this paper. Minimizing the real part of the system eigenvalue associated with low frequency oscillation mode is proposed as the objective function of the design problem. The proposed controller has been examined on a weakly connected power system with different disturbances and loading conditions. Eigenvalue analysis and nonlinear simulation results show that the performance of the proposed GCSC outperforms that of conventional power system stabilizer (CPSS). It is also observed that the proposed GCSC improves greatly the voltage profile of the system under severe disturbances.

Published in:

Electric Power Engineering, 1999. PowerTech Budapest 99. International Conference on

Date of Conference:

Aug. 29 1999-Sept. 2 1999