By Topic

Single-phase power-factor-correction AC/DC converters with three PWM control schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bor-Ren Lin ; Dept. of Electr. Eng., Nat. Yunlin Univ. of Sci. & Technol., Taiwan, China ; Hsin-Hung Lu

Three pulse-width modulation (PWM) control schemes for a single-phase power-factor-correction (PFC) AC/DC converter are presented to improve the power quality. A diode bridge with two power switches is employed as a PFC circuit to achieve a high power factor and low line current harmonic distortion. The control schemes are based on look-up tables with hysteresis current controller (HCC) to generate two-level or three-level PWM on the DC side of diode rectifier. Based on the proposed three control schemes, the line current is driven to follow the sinusoidal current command which is in phase with the supply voltage, and two capacitor voltages on the DC bus are controlled to be balanced. The simulation and experimental results of a 1 kW converter with load as well as line voltage variation and shown to verify the proposed control schemes. It is shown that unity PFC is achieved using a simple control circuit and the measured line current harmonics satisfy the IEC 1000-3-2 requirements

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:36 ,  Issue: 1 )